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Abstract We discuss the Hellmann–Feynman theorem for degenerate states and its
application to the calculation of the derivatives of statistical averages with respect to
external parameters.
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1 Introduction

Some time ago there was a discussion about the validity of the Hellmann–Feynman
theorem (HFT) [1] for degenerate states [2–5]. Recently, some of those results [3–5]
proved useful in deriving an expression for the derivative of the non-extensive free
energy with respect to an external parameter [6]. The author took into account the
possible occurrence of degenerate states in the proof of his Lemma 1 [6]. However,
in the proof of his Theorem 2 he appears to assume that the eigenvalues of Ĥ and
of the observable Â are nondegenerate [6]. We think that this discrepancy should be
analyzed carefully.

In this paper we investigate the connection between the HFT for quantum-
mechanical expectation values and statistical averages when there are degenerate
states. In Sect. 2 we review earlier analytical expressions for the HFT and then show
how to apply them to statistical averages in Sect. 3.
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2 The Hellmann–Feynman theorem for degenerate states

The starting point of our discussion is the Schrödinger equation

Ĥψm = Emψm (1)

where m is a set of quantum numbers that completely specify the stationary state ψm

and we assume that 〈ψn| ψm〉 = δmn . If the Hamiltonian operator Ĥ depends on a
parameter λ then its eigenvalues and eigenvectors will also depend on it. Following
Rastegin [6] we assume that the spectrum of Ĥ is discrete.

The HFT for nondegenerate states does not present any difficulty and for this reason
we assume that the energy level En is gn-fold degenerate:

Ĥψni = Eniψni , Eni = En, i = 1, 2, . . . , gn (2)

If we differentiate this equation with respect to λ and then apply the bra
〈
ψnj

∣∣ from
the left, we obtain

〈
ψnj

∣∣ ∂ Ĥ

∂λ
|ψni 〉 = ∂Eni

∂λ
δi j (3)

This equation tells us that there is a set of degenerate eigenvectors for which the
diagonal HFT (i = j) is always valid. For simplicity we avoid a detailed discussion of
the differentiation of eigenvectors and operators with respect to the external parameter;
in this respect we follow earlier approaches to the subject [3–5].

It is convenient to analyse two different cases separately. The simpler one takes
place when gn does not change with λ (at least for all values of physical interest of
this external parameter). Any unitary transformation of the degenerate states

χi =
gn∑

j=1

c jiψnj , i = 1, 2, . . . , gn (4)

yields a set of gn eigenvectors of Ĥ with eigenvalue En . They satisfy

〈χi | ∂ Ĥ

∂λ

∣∣χ j
〉 =

gn∑

k=1

c∗
ki ck j

∂Enk

∂λ
(5)

Since gn does not change with λ it is obvious that ∂Enk
∂λ

= ∂En
∂λ

for all k = 1, 2, . . . , gn

and this equation simplifies to

〈χi | ∂ Ĥ

∂λ

∣∣χ j
〉 = ∂Eni

∂λ
δi j (6)

123



2130 J Math Chem (2014) 52:2128–2132

that is similar to (3). In other words: in this case we do not have to worry about choosing
a particular set of eigenvectors and all the results derived by Rastegin [6] apply to any
observable provided that degeneracy is not removed through variations of λ.

When gn changes, for example at λ = λ0, then ∂Eni
∂λ

∣∣∣
λ=λ0

�= ∂Enj
∂λ

∣∣∣
λ=λ0

for some

i �= j and Eq. (6) does not follow from Eq. (5). However, in this case we can derive
the Eq. [3]

gn∑

i=1

〈χi | ∂ Ĥ

∂λ
|χi 〉 =

gn∑

k=1

∂Enk

∂λ
(7)

that was invoked by Rastegin [6] to prove his Lemma 1. Typically, gn(λ) < gn(λ0)

which happens, for example, when the symmetry of the system is greater when λ = λ0.
Before discussing the trace averages that currently appear in statistical mechanics,

it is convenient to analyse this problem from another point of view. If we differentiate
Eq. (1) with respect to λ and then apply the bra 〈ψn| from the left, we obtain an
expression for both the diagonal (m = n) and off-diagonal (m �= n) HFT [7]

〈ψn| ∂ Ĥ

∂λ
|ψm〉 = (Em − En) 〈ψn| ∂ψm

∂λ

〉
+ ∂Em

∂λ
δmn (8)

If the eigenvalues Em and En are degenerate at λ = λ0 Em(λ0) = En(λ0) then

〈ψn| ∂ Ĥ

∂λ
|ψm〉

∣∣∣∣∣
λ=λ0

= ∂Em

∂λ

∣∣∣∣
λ=λ0

δmn (9)

This equation is identical to Eq. (3) but its derivation reveals that the diagonal HFT
applies to degenerate states provided that we choose the eigenvectors of Ĥ according
to

ψn(λ0) = lim
λ→λ0

ψn(λ) (10)

3 The Hellmann–Feynman theorem for statistical averages

The results above have already been discussed in earlier papers in more or less similar
patterns. In what follows we analyse the HFT in the context of statistical averages
that is the main contribution of this paper. We will focus on a somewhat more general
setting than that considered by Rastegin [6] so that present results will be valid for
a wider variety of statistical theories. For any Hermitian operator Ŵ that commutes
with Ĥ : [

Ĥ , Ŵ
]

= 0 (11)

the hypervirial theorem

〈ψi |
[

Ĥ , Ŵ
] ∣∣ψ j

〉 = (
Ei − E j

) 〈ψi | Ŵ
∣∣ψ j

〉
(12)
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tells us that

〈ψi | Ŵ
∣∣ψ j

〉 = 0 if Ei �= E j (13)

If the trace

tr

(

Ŵ
∂ Ĥ

∂λ

)

=
∑

i

∑

j

〈ϕi | Ŵ
∣∣ϕ j

〉 〈
ϕ j

∣∣ ∂ Ĥ

∂λ
|ϕi 〉 (14)

exists then it is invariant under unitary transformations of the basis set and we can thus
choose the eigenvectors of Ĥ (10) that satisfy Eq. (9). Since they also satisfy Eq. (13)
we have

tr

(

Ŵ
∂ Ĥ

∂λ

)

=
∑

n

〈ψn| Ŵ |ψn〉 〈ψn| ∂ Ĥ

∂λ
|ψn〉 =

∑

n

〈ψn| Ŵ |ψn〉 ∂En

∂λ
(15)

This expression is the basis for many of the results derived by Rastegin [6] such as,
for example, his Lemma 1:

tr

[

f (Ĥ)
∂ Ĥ

∂λ

]

=
∑

n

f (En)
∂En

∂λ
(16)

We appreciate that we do not have to worry about degeneracy when calculating traces
provided that Ŵ is diagonal with respect to the nondegenerate eigenvectors of Ĥ . In
other words: we do not need to invoke the HFT sum expression (7).

Equation (15) also applies to any operator Â that depends on a parameterλ, exhibits a
discrete spectrum and commutes with Ŵ . Following Rastegin [6] we choose an element
of the complete set of commuting observables that shares a common eigenbasis with
Ĥ

Âψm = amψm (17)

In such a case we have

tr

(

Ŵ
∂ Â

∂λ

)

=
∑

n

〈ψn| Ŵ |ψn〉 ∂an

∂λ
(18)

provided that

〈ψn| ∂ Â

∂λ
|ψm〉

∣∣∣∣∣
λ=λ0

= ∂am

∂λ

∣∣∣∣
λ=λ0

δmn (19)

when Em(λ0) = En(λ0) and Em(λ) �= En(λ) for λ �= λ0.
Rastegin’s equations (27) and (31) that are necessary for proving his Theorem 2 [6]

require that the eigenvectors satisfy present equations (9) and (19) when gn changes at
λ0. If one does not state these conditions explicitly then one is in principle assuming
that gn does not change with λ and the resulting theorems are not so widely applicable.
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We hope that present results may be useful in future applications of the HFT in
statistical mechanics. In particular, note that equations (15) and (18) are more general
that those developed by Rastegin [6] in which Ŵ = f (Ĥ).
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